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Abstract

The Ellipsoid NDF is a new normal distribution function (NDF)
that we introduce and use in the accompanying paper. It can be
used with micro-facet BRDF to model the reflection and refraction
of light from surfaces. This new distribution is a generalization of
the widely used isotropic GGX/Trowbridge-Reitz distribution. The
Ellipsoid model is based on the surface statistics of an arbitrary 3D
ellipsoid allowing both anisotropy and rotations of the distribution.
This document describes the derivation of the ellipsoid NDF along
with a corresponding shadowing/masking term, which is needed
for energy conservation, and a low-variance importance sampling
strategy that guarantees the sample weights never exceed one.

1 Introduction to Ellipsoid NDF

The Ellipsoid normal distribution function (NDF) can be compactly
expressed as:

D(m) =
X+(m ·n)

π |A| ‖A n‖ ‖A−Tm‖4
(1)

where m is the micro-facet normal, n is the geometric normal of
the macro-surface, and A is an 3x3 matrix with determinant |A|
and whose inverse transpose is denoted as A−T. The normals are
represented as 3 element column vectors with unit Euclidian norm
(i.e. ‖m‖ = ‖n‖ = 1). The numerator restricts m to the hemisphere
centered around n using the indicator function for positive numbers
(i.e. X+(x) = 1 if x ≥ 0 and is zero otherwise).

The 3x3 matrix A controls the shape of the distribution. Although
the matrix contains 9 elements, there are actually only 5 useful
degrees of freedom. Scaling the matrix by a constant (e.g., c A)
and left multiplication by an orthogonal matrix (e.g., Q A) does not
change the distribution, thus many different matrices can produce
the same distribution. It is convenient to specify the matrix A as the
product of a orthogonal rotation matrix R and a diagonal scaling
matrix S as:

A = S R where S =


αx 0 0
0 αy 0
0 0 1


and RTR = I (2)

A 3D rotation matrix provides three degrees of freedom while the
scaling matrix provides another two to span the space of all possible
ellipsoidal distributions. If we set the rotation matrix to just be the
identity (i.e. R = I or no rotation), then the distribution reduces
to be exactly the same as the anisotropic distribution GTR2aniso in
[Burley 2012, Eq. 13]. And if we further set αx = αy = α, then the
distribution becomes identical to the isotropic GGX/Trowbridge-
Reitz distribution [Walter et al. 2007; Trowbridge and Reitz 1975].
As in those previous models, the α parameters control the width
of the distribution in two orthogonal directions and correspond to
notions of surface roughness.

There are many ways to parameterize the space of 3D rotations.
One that we have found convenient is to work in a coordinate sys-
tem where the macro-surface normal is aligned with the z-axis (i.e.

n = z) and express the rotation as a product of three axial rotations:

R = Rx(θx ) Ry(θy ) Rz(θz ) (3)

=


1 0 0
0 cos θx − sinθx
0 sin θx cos θx





cos θy 0 sin θy
0 1 0

− sinθy 0 cos θy





cos θz − sinθz 0
sin θz cos θz 0

0 0 1


In this space the three rotation parameters and their effects on the
distribution are easy to understand. θz rotates the distribution in
the tangent plane to align the axes of anisotropy (whose roughness
is controlled by αx and αy respectively) with the desired princi-
pal directions. Then θx and θy allow shifting the maximal value
of the distribution away from the macro-surface normal direction
n. Thus if θx or θy are non-zero, then we get an asymmetric or
skewed distribution. This is an effect that is not usually supported
by NDFs in graphics but something that we have observed in some
of our measured data. This parameterization is simple and intuitive
to control when θx and θy are small, which has been generally true
in our data. For larger rotations though, alternative representations
for rotations such as quaternions might be preferable.

1.1 Ellipsoid BRDF

The reflection pattern from a surface is described by its bidirec-
tional reflectance distribution function (BRDF), denoted fr. Micro-
facet theory [Torrance and Sparrow 1967; Blinn 1977; Cook and
Torrance 1982] approximates the BRDF in terms of the surfaces
normal distribution function as [Walter et al. 2007]:

fr(ψ,ω) =
D(h) G(ψ,ω,h) F (ψ ·h)

4 |ψ ·n| |ω ·n|
where h =

ψ + ω
‖ψ + ω‖

(4)

for light which arrives from direction ψ and is reflected in direction
ω. The derived direction h is often called the half-direction (or half-
vector). We can use the ellipsoid NDF for D. The fresnel factor F
can be computed using the standard fresnel equations based on the
material’s complex index of refraction. The only other piece we
need is a suitable shadowing-masking term G.

Shadowing-masking terms are essential in microfacet models to
preserve energy conservation and prevent unrealistic behavior
at near-grazing angles. We recommend the following shading-
masking term, which we show later guarantees energy conservation
when used with the ellipsoid NDF:

G(ψ,ω,m) = G1(ψ,m) G1(ω,m) (5)

G1(u,m) = min
(
1,

2 ‖An‖2 |u ·n|
‖Au‖ ‖An‖ + (Au) · (An)

)
X+(u ·m) (6)

We now have all the definitions needed evaluate the ellipsoid mi-
crofacet BRDF. However in many applications, it is also very useful
to be able to randomly sample a BRDF (e.g., in Monte Carlo ren-
dering algorithms). Given one of the directions, ψ or ω, we want
to be able to generate the other direction with a probability that is
roughly proportional to fr(ψ,ω). In section 4, we describe high
quality sampling schemes for the ellipsoid BRDFs. Note since our
BRDFs obey reciprocity (i.e. fr(ψ,ω) = fr(ω,ψ)), the sampling
methods are the same for both directions.



ψ Direction from which light arrives at surface
ω Direction into which light is scattered
n Large-scale, or average, surface normal
m Local micro-surface normal
D Normal distribution function (NDF)
G Bidirectional shadowing-masking function
G1 Monodirectional shadowing function
A ellipsoid shape matrix
Ce Constant related to ellipsoid size
A⊥

e Projected area of ellipsoid
A⊥

`
Projected area of ellipsoidal lune

X+(x) Positive indicator function (= 1 if x ≥ 0 else 0)

Figure 1: List of important symbols.

2 Derivation of Ellipsoid NDF

In this section we show how to derive the normal distribution of
a 3D ellipsoid, which together with a normalization constraint for
micro-facet NDFs, defines the ellipsoid NDF. While many differ-
ent NDFs have been proposed, the two most widely used ones in
computer graphics are the Beckmann and GGX distributions. The
Beckmann distribution is derived from assuming gaussian random
statistics for the surface and has proved a good model for some sur-
faces. In a previous paper, we measured several surfaces and noted
that Beckmann was unable to provide a good fit for the rougher
surfaces in our dataset. We tried many different functions until we
found one that was analytically tractable and provided a good fit for
our ground glass sample, which we termed the GGX1 distribution.
However GGX is actually mathematically identical to an earlier
NDF model proposed by Trowbridge and Reitz [Trowbridge and
Reitz 1975]2, which coincidently they also matched to measured
data from a ground glass sample. Unlike GGX, TrowbridgeReitz
was derived by computing the NDF of a special class of ellipsoids,
called spheroids, or ellipsoids of revolution. Unfortunately their
method does not generalize to arbitrary, or triaxial, ellipsoids which
are not surfaces of revolution. Instead we use an alternate approach
based on implicit surfaces to derive the NDF for general ellipsoids,
which naturally extends the isotropic GGX/TrowbridgeReitz distri-
butions to handle anisotropy and rotation.

Many different surfaces can share the same NDF, so we need not
assume our surface actually consists of ellipsoids, but only that it
has a similar NDF to one. Deriving NDFs from a simple convex
shape, such as a ellipsoid, is intuitively appealing and also allows
us to solve the related integrals geometrically which may be easier.
One natural way to define an arbitrary ellipsoid is using an implicit
surface of all points p⇀ that satisfy this condition:

f (p⇀) = p⇀TATA p⇀ − C2
e = 0 (7)

where A is a 3×3 matrix as discussed earlier and Ce is a constant
related to the size of the ellipsoid.

The NDF appears in micro-facet theory because it is used to convert
an area integral into an integral over micro-surface normals. This
transformation is sometimes called a Gauss map, and its Jacobian
is given by the Gaussian curvature, Kg. The NDF is the Jacobian
needed for this change of variables from surface-area to normal-
density along with a normalization term and can be defined as:

D(m) =
1

A⊥
e (n)

dA
dm
=

1
A⊥

e (n) Kg(m)
(8)

1The name GGX was originally stood for ground glass unknown.
2To my knowledge, Brent Burley was the first person notice the equiva-

lence of GGX and Trowbridge-Reitz in 2011, using trig identities.

where the normalization factor A⊥
e (n) is the projected area of the

ellipsoid in the direction n, dA is the area measure over the micro-
surface, dm is the solid angle measure over surface normals, and
Kg(m) is the surface’s gaussian curvature at the point where its
local surface normal is equal to m. This is well defined since for
non-degenerate ellipsoids, each surface normal m occurs at only a
single point on the ellipsoid.

2.1 Gaussian Curvature of Ellipsoids

The gaussian curvature of an implicit surface is given by [Goldman
2005, Eq. 4.1]:

Kg =
(∇ f )Tadj(H)∇ f

‖∇ f ‖4
(9)

where ∇ f is the gradient of the implicit function and adj(H) is the
adjugate of its Hessian which, in this case, can be expressed as:

adj(H) = |H| H−1 when |H| , 0 (10)

H = ∇2 f = 2 ATA (11)

∇ f = 2 ATAp⇀ = Hp⇀ (12)

Subsituting these values, we get:

Kg =
|H| (Hp⇀)TH−1(Hp⇀)

‖Hp⇀‖4
(13)

This gives us the gaussian curvature except, that we want it ex-
pressed in terms of the micro-surface normal m instead of surface
position p⇀ which are related by:

m =
∇ f
‖∇ f ‖

=
Hp⇀

‖Hp⇀‖
(14)

Substituting this into the numerator we get:

Kg =
|H|mTH−1m
‖Hp⇀‖2

(15)

To get rid of the p⇀ in the denominator, consider the following ex-
pansion:

mTH−1m =
(Hp⇀)TH−1(Hp⇀)

‖Hp⇀‖2
=

2p⇀TATAp⇀

‖Hp⇀‖2
=

2C2
e

‖Hp⇀‖2

=⇒ ‖Hp⇀‖2 =
2C2

e

mTH−1m
(16)

We can then express the gaussian curvature as:

Kg =
|H|

(
mTH−1m

)2

2C2
e

(17)

Next we use the relations that |H| = 8 |A|2 and:

mTH−1m =
1
2

mTA−1A−Tm =
1
2
A−Tm

2
(18)

to express the gaussian curvature as:

Kg =
|A|2 A−Tm

4

C2
e

(19)

Now that we have a suitable expression for the Gaussian curvature,
next we need to compute the projected area of an ellipsoid.
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2.2 Projected Area of Ellipsoids

The projected area of a convex shape, such as an ellipsoid, in a
direction u can be defined by an integral over its surface S:

A⊥

e (u) =
∫
S

X+(u ·m) (u ·m) dp⇀ (20)

This integral is difficult to solve directly for general ellipsoids, so
we will instead use a more geometric solution approach. We can
find the silhouette of the ellipsoid by taking all points where the
local surface normal is perpendicular to a view direction u which is
equivalent to solving for the condition:

0 = u ·m

0 = u · (ATAp⇀) = (ATAu) · p⇀ (21)

Notice that this is also the equation for a plane passing through the
origin and perpendicular to the vector ATAu. Hence the silhouette
must be an ellipse lying in this plane (since the intersection of a
plane and an ellipsoid is always an ellipse). This silhouette ellipse
necessarily has the same projected area as the ellipsoid.

To compute the area of this ellipse, let us consider points p⇀◦ in a
space transformed by the affine transform A and defined by:

p⇀◦ = Ap⇀ and p⇀ = A−1 p⇀◦ (22)

In this transformed space, the implicit equation for the ellipsoid
becomes p⇀◦

T p⇀◦ − C2
e = 0, which means the ellipsoid has been

transformed into a sphere with radius Ce. Spheres are much easier
to analyze, so we can start our computation in this sphere-space and
then transform the results back to ellipsoid-space. The silhouette in
this space is an intersection of a sphere and a plane passing through
its center, so its area is πC2

e . To compute the un-transformed area,
we can use the following identity for cross-products:

(Ma⇀) × (Mb⇀) = |M|M−T(a⇀ × b⇀) (23)

where M is any non-singular matrix and a⇀ and b⇀ are 3D vectors.
Cross-products transform in the same way as the perpendiculars to
planes (i.e. both are contra-variant), and their lengths are propor-
tional to the corresponding areas in their respective spaces. Thus if
our ellipse is perpendicular to ATAu, then the corresponding circle
will be perpendicular to |A|A−TATAu in the sphere-space. More-
over the ratio between the lengths of these vectors is equal to the
ratio between the areas of the silhouette ellipse and circle in their
respective spaces.

Finally we have to account for the fact that the ellipse silhouette
plane may not be perpendicular to u by multiplying by the dot prod-
uct between the unit plane normal and u. Putting these three terms
together we get:

A⊥

e (u) =
(
πC2

e
) (

‖ATAu‖
|A| ‖A−TATAu‖

) (
(ATAu) ·u
‖ATAu‖

)

=
πC2

e ‖Au‖
|A|

(24)

This agrees with previous results for the projected area of an ellip-
soid (e.g., [Vickers 1996] albeit in different notation).3 Now we
can combine equations 8, 19, and 24, to complete our derivation of
equation 1 for the ellipsoid NDF. �

3We are fortunate that the projected area can be expressed so simply.
The total surface area of a general ellipsoid has no solution in terms of
elementary functions and is instead expressed in terms of elliptic integrals.

2.3 Ellipsoidal Lunes and Their Projected Area

Next we generalize the result above to compute projected areas of
partial ellipsoids, which we call ellipsoidal lunes. Although not
needed to define the ellipsoid NDF itself, we will need to this for
related functions such as the shadowing-masking and importance
sampling. When using the ellipsoid NDF in a microfacet model
for a surface reflectance, we actually use only half of the ellipsoid
because we are only interested in portions where m ·n > 0. As per
the discussion above, this corresponds to cutting the ellipsoid in half
by a plane that is perpendicular to the vector ATAn. It is useful to
be able to compute the projected area of such a half ellipsoid along
an arbitrary direction u, where we additionally restrict ourselves to
portions of the ellipsoid where m ·u > 0. This corresponds cutting
the ellipsoid by two planes, both of which pass through its center,
and keeping only the portion on the positive side of both planes. On
a sphere such a region is called a spherical lune and by extension
we will refer to such a region as an ellipsoidal lune.

We can define the projected area of such an ellipsoidal lune by an
integral over the ellipsoid surface S:

A⊥

` (u,v) =
∫
S

X+(u ·m) X+(v ·m) (u ·m) dp⇀ (25)

Comparing to equation 20, we can see that A⊥
e (u) = A⊥

`
(u,u), so

this is generalization of the ellipsoid projected area problem. We
follow the same solution approach as before. Using equation 22,
we start by working in a transformed space where the ellipsoid be-
comes a sphere with radius Ce, and the ellipsoidal lune becomes a
spherical lune. Note that for a sphere, the silhouette curves are sim-
ply great circles in planes perpendicular to the projection directions,
which is not generally true for ellipsoids. Let the angle between the
normals of the two planes defining a spherical lune be θ` . Then
the projected area of a spherical lune along one of these normals is
given by π

2 C2
e (1 + cos θ` ). The vectors Au and Av are perpendicu-

lars to these planes in sphere space, so we can normalize and take
their dot product to compute the cos θ` .

Once we know the projected area of the spherical lune, we can ac-
count for the change in area when transforming back to the ellipsoid
space, and compute the corresponding projected area, in the same
manner as in equation 24 to get:

A⊥

` (u,v) =
π

2
C2

e

(
1 +

Au ·Av
‖Au‖ ‖Av‖

) (
‖ATAu‖
|A| ‖Au‖

) (
(ATAu) ·u
‖ATAu‖

)

=
πC2

e (‖Au‖ ‖Av‖ + Au ·Av)
2 |A| ‖Av‖

(26)

2.4 Convention for Ce

The ellipsoid size constant Ce appears in many of our intermedi-
ate equations, but not in our final expressions. This is because the
NDF and its related functions are defined using ratios between ar-
eas such that the Ce factors always cancel out. During computations
however, it is often useful to select a particular value for Ce and we
are free to choose any convenient value. The convention we suggest
is to pick Ce such that A⊥

e (n) = 1 by inverting equation 24:

Ce =

√
|A|

π ‖An‖
(27)

3 Shadowing-masking Approximation

For a rough surface, generally some areas will not be visible from
the lighting direction (i.e. shadowed) and some will not not visi-



ble from the viewing direction (i.e. masked). Ignoring this effect
would result in unrealistic behavior, especially at near-grazing an-
gles. The shadowing-masking term G(ψ,ω,m) is defined as the
fraction of the surface with local normal m that is visible from both
the light ψ and viewing ω directions. Thus it produces values in
the range [0,1]. The exact G function for a surface is highly de-
pendent on its fine-scale details and can be very different even for
surfaces with the same NDF. In practice, the exact G function is
almost always unknown, and most models settle instead for an ap-
proximation that is energy-conserving and has plausible behavior.
One common energy-conserving G is the V-Groove function [Tor-
rance and Sparrow 1967], however its behavior is atypical of most
real world surfaces, and thus we do not recommend using it. In-
stead we use an approximation approach that is often called the
Smith shadowing-masking.

We start with the assumption that the bi-directional shadowing-
masking term G can be well approximated as the separable product
of two mono-directional shadowing terms G1 (see equation 5). We
further approximate G1 as being independent of the local surface
normal m (except for a check to see if it is back-facing with respect
to the relevant direction). Under these approximations, G1 can be
computed using an integral of the NDF [Smith 1967; Walter et al.
2007]. Unfortunately, for the ellipsoid NDF we were not able to di-
rectly solve this integral analytically. As discussed in [Smith 1967;
Heitz 2014], this integral gives exactly the term needed to make the
projected area of the visible (i.e. unshadowed) part of the micro-
surface equal to the projected area of the macro-surface, under the
assumptions above. This provides us an alternate geometric way to
define G1.

When viewing the surface from direction u, surface locations which
are back-facing (i.e. where u ·m < 0) must necessarily be in shadow
(i.e. G1 = 0 in this case). For the rest of the surface, the visible
projected area constraint for the ellipsoid NDF can be expressed in
terms of the projected area of the ellipsoidal lune as:

A⊥

` (u,n) G1(u) ≤ A⊥

e (n) |u ·n| (28)

where the left-hand side is the visible projected area of the micro-
surface and the right-hand side is the projected area of the corre-
sponding macro-surface (i.e. a flat surface perpendicular to n). Ide-
ally we would like enforce this as an equality constraint, but for
some parameter settings of the ellipsoid NDF we will settle for the
inequality, which is still sufficient to ensure energy conservation.
The following expression for G1 satisfies these constraints:

G1(u,m) = min


1,

A⊥
e (n) |u ·n|
A⊥

`
(u,n)


 X+(u ·m) (29)

where the X+() term ensures that back-facing portions of the sur-
face are shadowed and the minimum operation ensures G1 ≤ 1
(visible surface cannot be larger than the total surface). Substituting
equations 24 and 26 into this equation gives the ellipsoid shadowing
term presented in equation 6. �

4 Importance Sampling

Often we know one of the two directions, ψ or ω, and would like
randomly generate the other direction with a probability based on
fr(ψ,ω). This process is referred to as importance sampling the
BRDF. Ideally the probability would be exactly proportional to the
BRDF, but in practice, we generally settle for a function that is only
approximately proportional. Because our BRDFs obey reciprocity
(i.e. fr(ψ,ω) = fr(ω,ψ)), we can use the same method regardless
of which of the two directions we are sampling. Without loss of
generality, we will assume here that ψ is known and we want to
randomly sample ω.

The standard method for sampling microfacet BRDFs is to first ran-
domly sample a half direction h, and then use that determine the
other desired direction (e.g., see [Walter et al. 2007]). The usual
sampling methods for the GGX and Beckmann distributions gen-
erates half vectors with a probability given by: p(h) = D(h) |h ·n|
[Walter et al. 2007]. This means the probability is actually inde-
pendent of the known direction ψ, and tends to work best when ψ
is close to n. For grazing angles, however such sampling can some-
times be poor (i.e. exhibit high variance).

A better sampling method is to choose half directions with a prob-
ability proportional to D(h) |h ·ψ |. Working out the normalization
term, since probability density functions must integrate to one, this
means our half angle sampling probability for the ellipsoid NDF
will be:

p(h) =
A⊥

e (n)
A⊥

`
(u,n)

X+(h ·ψ) D(h) |h ·ψ | (30)

By design, this normalization term is closely related to our mono-
directional shadowing term G1. In cases where the ellipsoid NDF
reduces to the prior NDFs, GGX or GTR2aniso, the sampling meth-
ods presented here provide a better importance sampling than the
usual approaches which do not take ψ into account.

Importance sampling an NDF is quite easy if we have an explicit
representation for the micro-surface, such as our ellipsoid. We can
generate directions m with the probability above by shooting ran-
dom rays at the surface along the known direction ψ and using the
m from the corresponding points they hit on the surface. Below we
briefly outline three ways to implement this importance sampling:

Version 1. One way to generate such rays is to randomly sample
points on the silhouette of a bounding volume for the surface. Then
we generate a ray4 passing through that point with direction -ψ.
If the ray intersects the surface (i.e. the ellipsoid) at a valid point
(i.e. inside the lune where m · n ≥ 0 and m · ψ ≥ 0), we use
the corresponding hit point’s m, otherwise we “reject” this ray and
repeat the process until a valid hit point is found. Thus this is a form
of rejection sampling.

If we use a sphere for the bounding volume, then the silhouette
is just a circle whose area can be easily sampled using standard
techniques. The drawback with this version is that the rejection
rate may be quite high and we may have to generate and test many
random rays to get a sample.

Version 2. We can improve the version above by using the el-
lipsoid as its own bounding volume, which will usually be much
tighter than a bounding sphere. To generate random samples on the
ellipsoid’s silhouette, we can use the transformed space from equa-
tion 22. Recall that in this space the ellipsoid becomes a sphere
with radius Ce and that the direction ψ corresponds to the direction
Aψ in this space. We generate a point p⇀◦ by randomly sampling
a point in the circle perpendicular to Aψ and then transform this
back using equation 22 to create a random point on the ellipsoid’s
silhouette. This point plus the direction -ψ defines the random ray,
and then we can proceed as above, testing random rays until we get
a valid point.

Even better, we can project the point onto the sphere along the di-
rection Aψ before transforming back to the ellipsoid space. For
a sphere this is trivial to do analytically, and then we are guaran-
teed the point is already on the ellipsoid’s surface, removing the
need for ray intersection testing. However the point may lie outside
the valid ellipsoidal lune, so we still may need to generate multiple
points before we get a valid one. Thus we still have to use rejection

4Note these rays are really just oriented lines.



sampling, but the rejection rate is typically much lower than with
the first version.

Version 3. We can further improve this procedure to get rid of the
need for rejection sampling, by modifying the above procedure to
only generate points inside the valid ellipsoidal lune. In the trans-
formed sphere-space, the ellipsoidal lune become a spherical lune.
The projected area, or silhouette, of a spherical lune is a crescent
shape bounded on one side by a hemi-circle and on the other by a
hemi-ellipse. Its area is equal to an ellipse formed by compressing
a circle along one axis by a factor of 1

2 (1+cos θ` ) (see Section 2.3).
Moreover we can transform this ellipse to the crescent shape using
an area preserving skew transform. Thus the algorithm proceeds as
follows. In sphere space, we generate a random point on the silhou-
ette circle, then we apply a 2D affine compress-and-skew transform
to convert this to a random point on the crescent. Next we project it
along the direction Aψ to get a point on the sphere, and then trans-
form this into the ellipsoid space. This is guaranteed to generate
a point on desired ellipsoidal lune and with the desired probability
distribution, and thus testing and rejection sampling is no longer
needed.

5 Open Issues

Manufacturability. In order to ensure our microsurface is a height
field, we defined the ellipsoid NDF using the half of an ellipsoid
where m · n ≥ 0. From equation 21, we can see this is equivalent
to slicing the ellipsoid in half by a plane perpendicular to ATAn,
which means that the average surface normal of our microsurface
is ATAn. However when θx or θy are non-zero, then in general
ATAn , n which can be a contradiction since we claimed that n was
the average or large-scale normal of our surface. For rendering, as
long as θx and θy are small the discrepancy is likely not significant,
but if the angles are large or we actually wanted to manufacture
such surfaces, this could be problematic if the discrepancy persists
across larger regions of the surface.

There are many different ways one could modify the NDF to get
the correct the average normal. For example, we could always split
the ellipsoid by a plane perpendicular to n, though in this case the
microsurface would no longer always be a height field. A better al-
ternative might be to add some additional vertical microsurface area
(i.e. where m · n = 0) to the NDF. Essentially a vertical extension
from the cut plane of the ellipsoid back to a plane perpendicular to
n. Since vertical surfaces do not affect A⊥

e (n) and do not generate
valid reflection directions (reflect light downward into the wrong
hemisphere), only the shadowing-masking term would need to be
modified (at least for reflections, it might not work as well for re-
fraction). It remains future work to determine if and when this issue
may be significant and what the best remedies may be.

Relation to normal maps. Normal maps are often used to model
meso-scale surface normals that are closely related NDF skew phe-
nomena the ellipsoid NDF is designed to support. And normal
maps can similarly cause a shifting of the maximum of a BRDF
away from the direction of the surface normal. Compared to skewed
NDFs, normal maps have the advantage that they are widely used
and can be applied to any BRDF model, not just microfacet ones.
However they also have some significant disadvantages. Unlike our
skewed NDF model, normal maps often violate energy conserva-
tion, break reciprocity, and can lead to singularities or ill-defined
behavior in some cases (e.g., for directions that are at or below the
horizon of the shading normal). In future, it would be interesting to
perform a more detailed comparison between the skewed NDF and
normal map approaches.
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